
INSTITUTO POLITÉCNICO NACIONAL
CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN

No. 79 Serie: AZUL Fecha: Agosto 2000

Famili es of “any time”
Algor ithms and Methods

to Compose Them

Adolfo Guzmán1

ABSTACT

An “any time” algorithm has to deliver its answer any time it is needed; it has to provide an an-
swer or a solution in certain (often small) amount of time, which is not known in advance. Thus,
the algorithm must have always “an (approximate) answer at hand”, that may keep refining as
time passes, until the demand for it arrives. Some ways to create any time (ant) algorithms from
non ant ones is presented. A collection of ant algorithms is given. Several manners to form new
ant algorithms out of old ones are exposed. It is also shown a creative way to use the idle time
(the time the ant algorithm is doing nothing, waiting to be called) to improve the values that are
required in a hurry.

Key words: Any time algorithm; approximate computation, predictor, preliminary results, suc-
cessive approximation.

1Centro de Investigación en Computación del IPN

1

Famili es of “any time” algor ithms and methods to compose them

1. INTRODUCTION AND OBJECTIVES

Normal algorithms provide their answer or solution when it is ready, and the time taken to com-
pute it is not known or it is irrelevant.

Real time algorithms must provide their answer within a time interval, which is known at the be-
ginning of execution. These algorithms have known constraints on the time they can use to
compute their answer.

Incremental algorithms compute the answer using as basis the previous result(s). There is no con-
straint on how much time they take.

Iterative algorithms compute the answer repeating the same procedure over the successive values
of the candidate answer, until some criteria on convergence or number of loops is met. They
belong to the incremental algorithms. There is no constraint on how much time they take.

Any time (ant) algorithms must provide an answer “on demand”, but how much time they have to
compute it, is not known in advance. Sometimes the answer is required (and must be pro-
vided) very soon after starting; in other executions, the same algorithm may have more time
before the answer is required. Thus, they are designed to have an answer always ready, but
they use the available time for improving it. A chapter of the book [Guzmán 94] provides
practical ways to produce these algorithms.
Example: a program to play chess, where a search is done up to a certain level, and a result
(play) is obtained. If there is more time, it looks at a deeper level, and obtains a better result.
And so on, until it runs out of time.
Example: as time passes, a given algorithm has the values 3., 3.1, 3.14, 3.14, 3.1416, 3.14159,
... as its answer. Which one is given depends on the time of the request.
Example: an election prediction algorithm has, as time passes, the answers Cárdenas, Cárde-
nas, Labastida, Labastida, Fox, Labastida, Fox, Fox, Fox, ...
Example: a normal decompressing algorithm produces an image only when it finishes. A
flexible decompressing algorithm produces quickly a (poor) image, which then becomes
sharper as time passes.
Ant algorithms or computation are also known as “approximation” algorithms, or converging
computations. They are useful because they provide an answer no matter how littl e or much
time there is to obtain it. We can think of an ant algorithm as containing several ways (other
algorithms, perhaps non ant) to predict the true value, executed in order of accuracy (close-
ness to the true value; see definition in §1.3).

Flexible algorithms (flexible computation) are a generalization of ant algorithms (which only
have time restrictions); here, restrictions can be on space, bandwidth or other resource.

1.1 Objective

Our objective is to exploit and handle ant algorithms. Thus, §2 presents families of ant algo-
rithms, and ways to obtain them out of normal algorithms. Also, §2.5 constructs new ant algo-

2

rithms out of old ones. §3 proposes a creative way to use the idle time to improve things, so that
the computation of future values becomes faster. Finally, some thought is given to their paralleli -
zation (§3.2).

We consider an algorithm with several inputs u, v, w, x, ... and one output y. Since §3.4 tells
us how to handle non numeric values (for the purposes of this paper) as if they were numeric, we
can assume that all these values are numeric. We can think that there is a cell y where the value y
is deposited several times, and read (by a an exogenous consumer) only once. See Figure 1. Com-
pare with single assignment languages, where each variable is written only once, and read many
times. It is convenient to assign a semaphore to this cell , with values virgin (no y value yet; cell i s
empty), in use (cell has a valid value), read (cell has been read, no sense to keep improving the
answer), and finished (algorithm has finished, no further accuracy [Cf. §1.3] can be sought). The
semaphore takes these values in the sequence v, i, r or v, i, f.

1.2 Research areas for ant algor ithms

Some are: a) how to provide best results with least resources (time); b) how to make gradual,
instead of sharp, improvements of the result (ideally, a continuous improvement is sought); c)
how to produce ant algorithms out of ordinary ones; d) how to mix ant algorithms; e) what to do
while the algorithm is not computing, so as to improve its accuracy for next time; f) more general
tradeoffs with flexible algorithms; g) how to parallelize them. This paper addresses (a, c-e).

1.3 More definitions

Algorithm. A formal procedure, a computer program, to perform something, such as a computa-
tion; to obtain some output values, to make some calculation, out of input values, out of
measurements.

Exact algorithm. An algorithm whose output is “correct” (i. e., not an approximation, not an esti-
mation).

Approximate algorithm, approximating algorithm. Algorithm A approximates algorithm E, if E is
exact, and B gives a value near that of E. Compare with ant algorithm.

ANT ALGORITHM. After
starting, it produces several,
successfully better, results in
y. Cell y. It is written

several times and
read only once.

CONSUMER
of y. After
triggering the
ANT algo-
rithm, it takes
an unknown
time to read y.

1. Start ANT algorithm

2. Produce
several an-
swers

3. Read
the
value
from y

FIGURE 1. The consumer (1) starts the ANT algorithm, which then (2) produces several
answers in cell y. Asynchronously, (3) the consumer reads cell y whenever it wishes, ob-

taining the best result obtained thus far.

3

A chain ant algorithm is an ant algorithm that can be represented as a sequence of successively
more accurate approximation (non ant) algorithms to compute value y (Cf. §1.1), the last one
in the chain being the exact calculation. I. e., A(u, v, w, x, ..) = { A1, A2, A3, ...}(u, v, w, x,
..). Each Ai is an element of the chain, and produces a value for y, of increasing accuracy. In
general, the Ai’s are not ant algorithms. Example: J1 of §2.2.

Some definition of scalar quantities follow for Ai, an element of a chain. Since these quantities
vary from one computation (one execution of Ai) to the next, we should consider their average
value over many computations.
The accuracy of Ai is Ni2/NT, a number between 0 and 1, where Ni1 is the number of correct bits

(when compared with NT, the number of bits1 of the correct answer) that the initial value of y
(the input to Ai) has,2 and Ni2 is the number of correct bits that the final value of y produced
by Ai has. Ai has increased the correct bits of y from Ni1 to Ni2.

The increase in accuracy of Ai is (Ni2 – Ni1)/NT.
The additional number of correct bits computed in Ai is Ni2 – Ni1.
The rank obtained by Ai is the position of the least significant bit that Ai obtains correctly. Bits

are counted from the most significant to the least; the count starts at 1. Example: If A3 pro-
duces values of y that are correct up to seven bits, the rank of A3 is 7, and we sometimes
write it as a subindex, thus: A37.

The compute time of Ai is the time t it takes to execute, if it ran in a single dedicated processor.
Sometimes write it as a superindex, thus: Ai t.

The efficiency of Ai is the ratio increase in number of additional correct bits obtained/compute
time, or (Ni2 – Ni1)/ti.
An element that augments in three the number of correct bits of y in 0.1 second has an eff i-
ciency of 30 bits/sec, one that augments these bits in 1 second has an eff iciency of 3 bits/sec.
But: final (less significant) correct bits are usually slower to obtain than coarse (more signifi-
cant) bits. This may be taken into account in a more elaborate definition of efficiency, which
we shall not develop.

Idle time. The interval elapsed from the time an ant algorithm has delivered its value (y has been
read) until the next time the algorithm is started.

An element of a chain ant algorithm is independent when it does not use values produced by some
previous element (as initial value, for instance). Example: J1 of §2.2. Otherwise, the element
is dependent.

To ant an algorithm E is to make an any time algorithm out of it. Making an ant algorithm out of
a non-ant one, or anting it, is shown in §2.2.

X is better than Y, where X and Y are ant algorithms that ant the same function E if, given that
both execute for the same amount of time ∆t, then, for all ∆t, X produces better results (with
better or equal accuracy) than Y.
If algorithms X and Y do not ant the same function E, the comparison is meaningless.

1
 We assume fixed point format, in two’s complement form. That is, the sign counts as one bit, is the most sig-

nificant bit, and it is bit number 1. Other formats can be used, with simple variations in these definitions.
2
 If the initial value is a random value, we can say that Ni1=0. If the initial value is some previously computed value

of y, we know already the value of Ni1.

4

2. GENERATING ANT ALGORITHMS

2.1 An initial family of algor ithms approximating an exact algor ithm E

Given an exact algorithm y = E (u, v, w, x, ..), which we think is slow, we would like to pro-
duce other (non ant) algorithms yielding results close to y, but faster. That is, we are willi ng to
produce fast approximating algorithms to E. These are some, in increasing order of execution
time and of average accuracy:
A. Return last value. The fastest algorithm: return the previous (last) value. It remembers the

last value it produced, which is kept in cell y and can be read at any time. A takes no time to
compute its answer, “ it already knows it.”

B. Memoing. Have a cache of tuples (y1, u1, v1, w1, x1); (y2, u2, v2, w2, x2), ...[a large table] and,
depending on input (u, v, w, x), produce a suitable value for y. Today’s main memories easily
store one milli on answers.

C. Interpolation. Linearly interpolate the value y for point (u, v, w, x) from values of y for
points (y1, u1, v1, w1, x1); (y2, u2, v2, w2, x2), ... (Figure 2). It uses the table of (B).

D. Non linear interpolation. Similar to C, but give more weight to points closest to (u, v, w, x).
E. Compute the bona fide value. Execute E, that is, compute the correct value. It is assumed

that this is the slowest of A through E.
Notice that all of these A through E are “outside approximations” to E, in the sense that they

are obtained without examining the insides (the code, the inner works) of algorithm E, which is
regarded as a black box. More approximating algorithms can be produced in §2.3 by opening E
and applying A-D, and other methods, to its parts or subcomputations.

2.2 How to produce an ant algor ithm from a non-ant algor ithm in black box form

Remember that an ant algorithm always has its output y ready for consumption. Given an ex-
act algorithm E, the most straightforward ant of E is
J1. y = A (u, v, w, x, ...);

y = B (u, v, w, x, ...);
y = C (u, v, w, x, ...);
y = D (u, v, w, x, ...);
y = E (u, v, w, x, ...);
end;

y1 = 23
y2 = -47

y3 = 0.15
y4 = 8

y = ?

FIGURE 2. Value of y is deduced from interpolating from values from y1,
y2, y3, ...

5

where A through E are the (non ant) algorithms of §2.1. Algorithm J1 says: have ready the
previous value y in y; then, read the cache of B to store in y the appropriate value; then, line-
arly interpolate (using C) from values in the cache; then, non-linearly interpolate (using D)
from same values; then, compute the exact value. At some time during the execution of J1,
the value y will be read. After this, there is no sense to continue the execution of J1.
Notice that we treated E as a black box, and A, B, C, and D were obtained without delving in
the form or code of E.

J2. Given a chain ant algorithm J1, one can produce a better chain ant algorithm J2 by deleting all
those elements (except one: the fastest) which have the same rank. Because it does not make
sense to execute two elements to obtain several values with the same rank; one of them will
do.

J3. Given a chain ant algorithm J2, one can produce a better chain ant algorithm J3 by sorting the
elements of J2 in ascending rank order. Because it does not make sense to spend some time to
produce an answer of rank r1, and then to spend an additional amount of time to produce a
new answer with rank less than r1.

J4. When in a chain ant algorithm where its elements are in ascending rank order (li ke J3), one
element Ai is not faster than another element Ai+k somewhere to its right (i. e., with higher
rank), and no element of higher rank than Ai is dependent on Ai, a better algorithm J4 is ob-
tained by deleting Ai from the chain, since Ai+k is faster and more accurate than Ai.
Remark: after the above simpli fications, the elements of the chain are in strictly ascending

rank (and in strictly ascending compute time, too, if there are no elements on which other ele-
ments depend). Next section delves more on improving ant algorithms.

2.3 Anting an algor ithm by combining antings of its subcomputations

Given that we want to ant a non ant algorithm, we can get results better than §2.2, by opening
the algorithm to expose its parts or subcomputations, anting these and combining the results. This
section explains how.

Suppose the exact algorithm E(u, v, w, x) has the following form:
E. a = f (u, v, w, x);

b = g(u, v, w, x);
c = h(u, v, w, x);
y = a + b + c;
end;

then an ant of E can be:
J5. a = ant of f;

b = ant of g;
c = ant of h;
y = a + b + c;
end;
J5 is not the best: it spends a good amount of time computing ant of f, and it may not have

enough time to compute ant of g. The bell rings for J5; it needs to produce the value of y and it
just finished computing (very accurately) ant of f. The solution to this problem, given below, is to
observe the rank of the successive values (of y) produced.

6

2.3.1 General pr ocedure to obtai n t he best ant of E

Let us say we are looking for M = best ant of E, where M is of the form { m1, m2, ...}. How
many mi’s? Of what rank each? What should they contain?
A. Decide how many elements the resulting chain {mi} should have. Let us assume that the ac-

curate y has rank 12, so that it is reasonable to produce four elements m1, m2, m3 and m4, to
render y’s of rank 4, 8, 10 and 12, respectively. We need ant of f, ant of g and ant of h to have
chains of four elements, too. But, of what rank each?

B. How are the partial results a, b and c combined (let us call this the combination part) in E?
Well , they are just added: y = a+b+c (we will t reat below other ways to combine partial re-
sults). We notice that rank y = max (rank of a, rank of b, rank of c). Thus, it makes sense to
spend just enough time in each of the chains fi, gi and hi to obtain the same rank in each. The
solution is: find four elements for each of chains { fi}, { gi}, {h i}, with ranks 4, 8, 10 and 12,
respectively.

C. Do the anting f, g and h, then apply the simpli fications of §2.2, in order to obtain the three
chains of step B.

D. The solution is: M= { m1; m2; m3; m4} where mi = (a=fi; b=gi; c=hi; y=a+b+c), and the rank
of mi = rank of f i = rank of gi = rank of hi = 4, 8, 10 and 12, respectively.
What if the combining part does not treat the partial results equally? Suppose the combination

part were y= a + b×c. Since the product yields a rank which is the sum of the ranks of the factors,
we need in the first iteration to have f1 of rank 4, but g1 and h1 need to yield an answer of rank 2
only. In this manner, the approximate answer y of m1, the first element, will be of rank 4. For the
second element, m2, we have: m28 = (a8=f28; b4=g24; c4=h24; y8=a8+b4×c4) where we have used
subindices to indicate the ranks.

Similarly, if the combining expression were y = a + sqrt(b) + c, the second element would be
m28 = (a8=f28; b16=g216; c8=h28; y8 = a8 + sqrt8 (b16) + c8), since the rank of sqrt is half the rank of
its input. Similar results can be obtained for other functions. In general, if y is a complicated
function of its previous parts a, b and c, then you need to understand how the rank of y depends
on the ranks of f, g and h. Moreover: you do not need to compute this complicated function accu-
rately at each element; you can ant it, too: see §2.3.1.2.

2.3.1.1 If each part can be expressed as a continuous approximation

Sometimes, the ant of each subcomputation of an algorithm can be expressed as a successive
refinement of the form of §2.3.2. In our example of §2.3, suppose ant f can be expressed as iterate
(fk), and similarly for ant g = iterate (gk), and ant h = iterate (hk), where fk, gk and hk are some
expressions that through iteration get the answers. It is tempting to say:
ant E = iterate (y = fk + gk, + hk); this will not work because we do not know when to quit. Let

us try:
ant E = y’ = y0; /* some initial value for y * /

do { y = y’ ;
y’ = fk + gk + hk }

until | y – y’ | < ε

7

This is still not right since each iteration produces, in general, different advances in the ranks
of fk, gk and hk. In other words, gk may need three iterations to add one more “good” bit to its
result, while gk needs ten iterations. The expression y’ = fk + gk + hk mixes ranks, so that y gets
only the smaller of the three ranks of fk, gk and hk. The solution is to have each mi of the answer
possess the form
mij = (aj= iteratej (fk);

bj= iteratej (gk);
cj=iteratej (hk);
yj=aj+bj+cj)

where the subindices indicate rank, and iteratej means: iterate until rank j is obtained. For m1,
j=4; for m2, j=8; for m3, j=10, whereas for m4, j=12.

2.3.1.2 If the combining part is a slow function that needs to be anted, too

What if the combination is of the form y=k(a, b, c), where k is a complex (slow) computation,
instead of the simple and fast y=a+b+c? It is desirable to ant k, too. For M = best ant of E of
§2.3.1, ant k will have four elements, of ranks 4, 8, 10 and 12: ant k= {k14, k28, k310, k412}. Then,
k14= (y4=k4(a, b, c)), where k4 means: compute k with rank 4. By analyzing the form of k, it can
be deduced what are the right ranks of a, b and c that will yield a value of k with rank 4. And the
same for k28, k310 and k412. This will give the right ranks for { fi}, { gi} and {hi}.

2.3.1.3 When the value is a composition of functions y = f(g(h(u, v, w, x, ..)))

Here, there is a need to know how the rank of h depends on the ranks of u, v, w and x. And
how the rank of g depends on the rank of h. And how the rank of f depends on the rank of g. An
example ill ustrates the procedure. If E = sqrt (v + sin (u – tan (wx))), our goal is to obtain (fol-
lowing our example of §2.3.1) ant E = { m14, m28, m310, m412} where the subindices indicate the
desired ranks. For instance, the solution for m2 is
m28 = (a20= tan20 (w∞×x∞);

 b16= sin16 (u∞ – a20);
 y8= sqrt8 (v∞ + b16)).

The derivation of the ranks starts at the end, in y, and proceeds towards the beginning, at a. y
needs to be rank 8, since m2 has rank 8. This means that b has to have range 16. This forces sin to
be sin16, which means: iterate or approximate the value of sine until it s rank is 16. That requires
the rank of a to be 20 (the rank of sin is a bit lower than the rank of its input). This forces tan to
become tan20, which means: iterate or approximate the tangent until it s rank is 20. It is assumed
(∞) that the inputs u, v, x, w have large enough ranks.

2.3.2 Ant i ng an exact al gor i t hm whi ch i s al ready a successi ve ref i nement t o-
war ds the exact answer

In many cases, an exact algorithm E is already in ant form. This happens when it is formed by
a loop or iteration that keeps improving the value of y. Generally, E takes the form

y’ = y0; /* initial value of y * /
do { y = y’ ;

8

y’ = f(u, v, w, x, y) } /* this f is called the kernel of E * /
until | y – y’ | < ε

In this case, ant of E = E.
Nevertheless, §2.3.1 wants the algorithm to be broken into four elements, each one of given rank
(ranks sought in §2.3.1 were 4, 8, 10 and 12). Four suitable values (ε1, ε2, ε3,ε4) of ε to obtain
those ranks should be selected. The solution is:
E(u, v, w, x) = { y’=y00; E14; E28; E310; E412} where Ei = do {y=y’ ; y’=f(u, v, w, x, y)}

until | y – y’ | < εi
where each εi keeps the iteration going until the desired rank for y is obtained. Thus, ε1 is the
correct value needed to keep the iteration of E1 going until the rank of y is 4, ε2 is the correct
value needed to keep the iteration of E1 going until the rank of y is 8, and so on.

With some variation, it is useful to apply this anting to algorithms that, from a quad tree, re-
construct a given image.

2.3.3 Ant i ng al gor i t hms wi th condi t i onal s

To obtain M = best ant of E, where E is the exact algorithm
E = { f; if p(u, v, w, x, ..) then g (..) else h (..) end-if},

we proceed as in §2.3.1, ignoring the predicate p(..), so that we obtain four chains, each of the
form

mi = (fi; i f p(..) then gi else hi end-if),
of ranks 4, 8, 10 and 12, respectively. That is: do not ant the predicate p, but keep it exact. Predi-
cates have only one bit accuracy (they are true or false), so they can not be anted.

9

Figure 3 shows the result M = ant of E, where each Ei = if f(u, v, w, x) then gi(..) else hi(..)
end-if, and we have three elements in M.

2.3.4 Other cases of var i abl e y

Some other cases and conditions of variable y are analyzed.
A. y is a value kept in a record in disk. For instance, y is the position an enemy submarine has. A

data base with each submarine’s position is kept in disk. Each day, a transaction file, with the
transactions of the day (submarine movements) is obtained. At night, the E algorithm updates
the disk data base with the daily transaction file. It is clear that the new value of y is a func-
tion of the value of y in the data base, plus the transaction in the transaction file. Probably E
processes each y value sequentially. What does it mean to ant E? That we want to have a new
E that delivers at any time the position of a submarine number s. y=E(s). Here, we do not have
a good manner to approximate the (old) value of y lying on disk, except to memo it (§2.1.B).
Thus, it makes sense to have a large table in random memory of part of the records in the data
base, so that updating y will be much faster. Copying these values to disk and retrieving new
ones could be done as time permits. The table should contain the most frequently asked sub-
marines, perhaps. This solution is well known as virtual memory (to pretend that the whole
data base is in memory, when only some part is) or caching, or memoing.

B. y is a global value that depends on many values on disk and on the transactions file. Let us
give y the new meaning y=(xc, yc, zc) is the center of mass of the submarines: the position of
the center of the submarine fleet. A new algorithm F now computes y at the end of the day by
updating the data base with the transactions file, and then computing the center of mass. To
ant F, you need to compute y “on the fly” , as records are read and written. This ant of F reads
every record of the data base, and updates some. Each record processed affects the value of y,

f

g h
E =

M = Ant of E =

f

g1 h1

f

g2 h2

f

g3 h3

FIGURE 3. Anting an algorithm
that contains a conditional. Notice
we do not use f1, f2 and f3 in M,
but just f.

10

so that it slowly moves towards the “true” or “exact” center of mass. This is slow if the data
base is large.
A better algorithm (which is exact, but you can ant it): keep the submarine file together (not
fragmented), and don’ t read the submarines by their submarine number or key s, but sequen-
tially as they appear on the file. Previous to processing it, read into memory (sequentially, not
using s as key) the complete transaction file (it pays to have it not fragmented, too). You will
be replacing 10,000 random access lectures (or whatever is the number of submarines, to be
called S), each taking 10 milli seconds (total=100 seconds), by 10,000 sequential lectures,
each taking 0.1 milli seconds (total=1 sec.), since the records are together in the disk track, so
the Winchester head does not need to be jumping all over the disk (each jump takes on aver-
age the seek time, typically 10 ms).
A better ant of E is produced by keeping together with yesterday’s value of y, some additional
information, namely, the number of submarines (or the total mass, if they are not equally mas-
sive). While constructing the transaction file, li kewise, keep track of the change of the center
of mass of the submarines moving today; of course, this change is (0, 0, 0) at the beginning of
the day. With this,

y = [S×old y + today’s change of the center of mass]/S.
Moreover, you can iterate and do the above addition incrementally, as soon as submarine
movements are detected:

y = yesterday’s y; /* S = total number of submarines * /
whenever (submarine s changes position)
do { y = [S×y + the change in position of s]/S;

 write the change in position of s to transaction file }
and in this case you do not even need to compute and keep the “change of the center of

mass of the submarines moving today” . This resembles incremental data mining algorithms,
which avoid recomputing from a large amount of old data [Guzman 97], by keeping addi-
tional information (about that old data) to permit division of the calculation in two functions
o(old) and n(new), so that the desired value y is y=h(o, n), and the value of o(old) is kept, to
avoid recomputing it as new values appear. In our example, o(old)= S×old y; n(new)=change
in position of s; and h(o, n) = [o+n]/S. In fact, these algorithms are very good to parallelize;
witness our example: suppose you have three computers, one in Europe, one in Asia, and
other in USA, where the change of position of submarines in those regions of the world is
computed. Then, the kernel of the above iteration is

y = [S×y + the change in Europe + the change in Asia + the change in US]/S.
Since the new function o(new) can be parallelized (in 3 machines, in our example), the value
of y is obtained faster.

2.4 Use of the semaphore of the y cell

The interval (r , v) or (f, v) where the semaphore (§1) goes from being read (r) or have fin-
ished (f) to the beginning (v) of the next execution of the ant algorithm, signals the idle time. This
idle time will be exploited in useful ways in §3.1.

11

2.5 Combining several chain ant algor ithms into newer ones

Assume we want to merge several chain ant algorithms, into a new chain ant algorithm that
makes use of the elements of the merged chains in the most convenient way. An example will
show the procedure. Let us say we want to form a new chain ant algorithm C by adequately
merging A = { A14

6; A28
9-6; A310

12-9; A412
16-12}, B = { B14

2; B28
9; B310

22; B412
36} and C = { C14

1;
C28

9; C310
14-9; C412

16-14}, where the exponents are the execute times (the notation 9-6 explains
not only that the execute time of A2 is 3, but that it is a dependent element), and the subindices
indicate rank. See Figure 4.

The idea is to select, for each rank, the closest element of the given chains. Notice how the al-
gorithm works with dependent and with independent elements. In fact, A2 takes its input value, a
y of rank 4, not from A1, its usual feeder, but from C1, which also produces a y of rank 4, too (we
selected C1 because it was faster than A1).

Note: make sure that each chain uses different sets of names of variables; otherwise, aliasing
and wrong results will result.

t

 4 8 10 12 rank

t

 4 8 10 12 rank

t

 4 8 10 12 rank

t

 4 8 10 12 rank

A

B

C

M

6
9-6

12-9
16-12

2
9

22 36

1
9

14-9 16-14

1
4-1

7-4
9-7

C1 A2 A3 C4

FIGURE 4. How to form a better chain ant
algorithm M from three chain ant algo-
rithms A, B and C.

For the first element of M, we see that,
from A16, B12, C11, the fastest is C11, so
C1 is chosen. For M2 we select the fastest
from A29-6, B29, C29; thus, M2 = A2. For
M3 we select A3 from A312-9, B322, C314-9.
For the last element of M, we select C4
from A416-12, B436, C416-14; thus, M4 = C4.

The new algorithm M is formed of 4
chains. M = { C1; A2; A3; C4}. The ranks
are 4, 8, 10 and 12. The compute times are
1, 4-1, 7-4 and 9-7, or 1, 4, 3 and 2.

12

2.5.1 When merging i s no good

Try this example: you have chains { Ai} i =1, m and {Bj} j=1,n; { Ai} producing values with
ranks 1, 3, 5, 7, ... and Bi values with even ranks. Each element takes 10 seconds to compute.

The chain Ai produces a value of rank 7 in 40 seconds, while the merged chain A1 B1 A2 B2
A3 B3 A4 B4 A5 B5 A6 B6 A7 (which will be produced by §2.3.1, and we thought it will be the
best) in 130 seconds. The advantage of the merged chain is that it produces more intermediate
values of y, but it is much slower than either { Ai} or { Bi}. A better solution will be to modify
slightly one of the chains (and discard the other), so that at all times (and not only every other
rank) the y value is available. See §3.3 for how to do this.

3. PARALLEL ANT ALGORITHMS

With the introduction of parallel processors, ant algorithms get even further attention and in-
terest. We discuss in this section (a) the use of idle time, and (b) an initial approach to paralleli -
zation. We already exposed in §2.3.4 the parallelization of incremental data mining algorithms.

3.1 Using the idle time to improve its accuracy next t ime

The time an ant algorithm is doing nothing can be used to improve its accuracy next time the
algorithm is called. It is “ to computer for the future.”

I shall use the following simile: A thunder signals “ it will rain soon”, and triggers the “pre-
pare for rain” ant algorithm. Quickly, I cover with plastic sheets the most valuable merchandise
laying in the open backyard. If rain has not started, I cover other less valuable merchandise. If
there is still tim e, I take into the house some merchandise, sequentially. At some time, rain starts.
The “prepare for rain” algorithm stops. This is how an ant merchant works. But now, from the
moment the rain starts until the thunder signal of next rain is heard, is the time to execute the
procedure “prepare for next rain.” This procedure may or may not be ant. I may make room in the
house, so that no merchandise needs to lay in the patio. I may pile the merchandise in some man-
ner that will facilit ate its covering. I may move the merchandise closer to the door, so that it will
take less time to move it inside. All of these make either faster or more accurate execution of the
“prepare for rain” ant algorithm next time. In fact, if we follow this line of reasoning, we will be
inventing the prepared algorithms, which prepare themselves for next execution, or which pre-
compute the answers to the expected questions. They are very useful because they store computer
time; that is, they convert idle or wasted computer time into useful results.

Question: How can it use the idle time of an ant algorithm? Some answers:
(a) To compute more values of the function, to have ready for a future use. Perhaps soon the in-

put (34, 0, 47, 2) will be given; let’s compute its answer and memoize it (§2.1.B).
This is useful for filli ng the cache of §2.1.B, which is also used in §2.1.C and §2.1.D.

(b) To measure the accuracy of each element of the chain. To measure its rank.
(c) To ascertain the compute time ti taken by each element A i of an approximate algorithm.

The computation of above quantities is important, since most of the procedures in this paper
rely on knowing these quantities.

13

3.2 Parallelizing an ant algor ithm

If an ant algorithm can use several processors, a simple way to parallelize it is to assign each
element of the chain of the algorithm to a processor. This will not be optimal, since element 1 will
finish soon, and processor 1 will be idle most of the time. See Figure 5.

A = { A1, A2, A3} parallel of A = { A1 , A2 , A3 }

In general, to make best use of the processors available, you have to divide each element Ai
into the processors. That is, the three processors need to be busy computing A1. Then, the three
processors need all go to computer different parts of A2, and so on. For instance, for algorithm J5
of §2.3,
J5. a = ant of f;

b = ant of g;
c = ant of h;
y = a + b + c;
end;
a solution better than Figure 5 is to give a processor to compute a, another for b, another for c.

See figure 6.

To parallelize algorithm M of §2.3.1,
M= { m1; m2; m3; m4} where each mi is

mi = (a=fi; b=gi; c=hi; y=a+b+c),
give to processor 1 the computation of f1, f2, f3, ...; to processor 2 give g1, g2, ...; and to

processor 3 give h1, h2, ... As in figure 6, processor 2 could handle the computation of y. Proces-
sor 2 has to take care to synchronize (wait for processors 1 and 3, if needed) so as not to add val-

FIGURE 5. A (non optimal) way to parallelize ant algorithm A.

a = ant of g a = ant of h

y = a + b + c

FIGURE 6. A good way to parallelize algorithm
J5 of §2.3. The black number indicates the proc-
essor assigned to each computation.

1 2 3

2

a = ant of f

14

ues with different ranks. By introducing a fourth processor, which only computes y = a+b+c, the
load is distributed as follows:
PROCESSOR 1: compute ant of f, without interruption, going from low to high ranks, and have a

as an external reference variable (§3.3), so that processor 4 can consume it at any time.
PROCESSOR 2. Same for ant of g.
PROCESSOR 3. Same for ant of h.
PROCESSOR 4. Do all the time y = a + b + c. Some values of y will come from adding values

(of a, b, and c) with different ranks.

3.3 Making y an external reference

In general, it is more desirable to have ant algorithms with dependent elements (such as those
in §2.3.2) than independent elements (li ke those in §2.2), because the independent elements of
higher rank “also go through lower ranks” , so that, in some sense, lower rank values get com-
puted several times, but they are not “brought to the surface” (that is, they are not stored into y).
Exception to this rule: when the independent elements are fast.

For this reason, in general, it is preferable to expose the y value, in an iteration such as
§2.3.1.1, in order to have it available all the time. This avoids independent elements. This avoids
the problem of §2.5.1, where one chain produced only values with even ranks, and the other, only
with odd ranks. A way to do this is to declare y (i. e., cell y) to be an external reference, or a
shared variable, or a global variable, or a common variable (depending on the language), so that
any body can read it at any time (warning: have y tell you when it has been read, so that you
should stop computing y and start using the available idle time, as §3.1 dictates).

3.4 How to handle non numeric values as if they were numeric

In many cases, algorithms yielding non-numeric values can be anted, too, if the values can be
arranged in a tree. For algorithms that work on image decompressing, big squares (low resolu-
tion) can be reconstructed first, albeit with not so much accuracy. Later, smaller parts will be re-
solved. For algorithms that work on quad trees, first process the big squares, then the middle
squares, etc. An example will ill ustrate how to map the labels (non numeric values) into integers,
so that the rank of the value can be obtained, and this paper can apply to these values.. Let us say
you have an algorithm that locates some submarine or somebody very precisely in the world. You
want to arrange into a tree the non-numeric values that describe geographic places, as follows.
First, your algorithm selects the country. Being 150 countries in the world, reserve the first 8 bits
(of the integer tag we are seeking) for them. Then, the country with more states (or provinces) is
U.S.A., with 50. Reserve the next (less significant) 6 bits of y for them. Now, reserve 9 bits for
the up to 512 municipaliti es that can exist in a state (Oaxaca has 400). Reserve the next 7 bits for
up to 128 cities that can exist in a given municipality. And so on.

Then, to construct a tag for each location in the world, first assign the most significant 8 bits:
arrange the 150 countries alphabetically (or by some other ordering criteria), give the number 1 to
Abysinia, the number 2 to Afganisthan, ... Then, assign the following 6 bits, by ordering the states
of each country (starting with country 1=Abysinia) and give them the numbers 1, 2, ... up to 64
(countries have less than 64 states). Do the same for the following 9 bits, to be assigned to the

15

municipaliti es. And so on. The resulting tags will be 8+6+9+7=30 bits long. This gives you a
mapping from words or geographic concepts to integer tags, where “rank” has a definition that
works as if it were the definition of §1.3.

Thus, the normal course of the algorithm “go from the coarse to the fine” can be translated
into “go from low to higher ranks” .

Warning: do not add or otherwise numerically manipulate these integer tags. They are not
integers, they are just tags. But: the rank of these values is an integer.

3.5 Conclusions and comments

• Given a normal algorithm considered as a black box, use of memoing or caching (§2.1.B) and
other techniques allows us to provide fast but approximate answers to its result, thus making
it an any time (ant) algorithm.

• By defining rank and other measures, several manners are introduced for forming ant algo-
rithms out of non ant or normal algorithms.

• Also, the paper introduces ways to mix several ant algorithms into new ones.
• A manner to use the idle time to compute rank, accuracy, etc., is given (§3.1).
• Finally, the paper gives some advice as how to parallelize ant algorithms.

3.5.1 Recommendat i ons f or f ur ther wor k

• Write a compiler to ant algorithms when there is no access to its code, along the lines of §2.2.
That is, given E, it generates the ants of E J1 through J4 of §2.2.

• Write a compiler to ant algorithms when there is access to its code, along the lines of §2.3.
That is, given E, it generates ant of E.

• Invent the prepared algorithms of §3.1: you would have invented a way to store computer
time, that is, to use today’s time for tomorrow’s computations.

• Write a compiler that, given an ant algorithm A, generates code that computes the useful val-
ues (a) to (c) of §3.1, during the idle time of A –so you do not have to write this code (a)
through (c) manually.

• Proceed further in the parallelization of ant algorithms (§3.2).
• Continue work on anting algorithms with non numerical values (§3.4).

3.6 Acknowledgments

To Eduardo Morales and Enrique Súcar [Súcar 94], who introduced me to new material in the
area.

These ideas came to mind (although they are not really about agents) as a result of working
for project xxxxx “ Interaction of purposeful agents that use different ontologies” [Guzman 2000]
sponsored by Conacyt.

Part of this work was produced under COTEPABE (IPN) sponsorship.

16

3.7 References

Guzmán, A. Técnicas Modernas de Programación. (1994) Book in Spanish, 300 pages. © 1994,
SoftwarePro International; printed by Centro Nacional de Cálculo (IPN); limited edition.

Guzmán A. Estado del Arte y de la Práctica en Minería de Datos, Análisis y Crítica. (1997) Me-
morias del II Taller Iberoamericano de Reconocimiento de Patrones, 367-376. La Habana,
Cuba. Marzo 24-28.

Adolfo Guzmán, Jesús Olivares, Araceli Demetrio and Carmen Domínguez, Interaction of pur-
poseful agents that use different ontologies. (2000) Lecture Notes in Artifi cial Intelli gence
1793, MICAI 2000: Advances in A. I. Osvaldo Cairo, Enrique Sucar, Francisco J. Cantu (eds).
Springer Verlag. Pages 557-573. Also: CIC Technical Report 46, Blue Series, January 2000.
ISBN 970-18-4132-8

Enrique Súcar. La referencia falta.

