INSTITUTO POLITECNICO NACIONAL
CENTRO DE INVESTIGACION EN COMPUTACION

No.79 Seriec AZUL Fedha: Agosto 2000

Famili es of “any time”
Algorithmsand Methods
to Compose Them

Adolfo Guzman®

ABSTACT

An “any time” dgorithm has to deliver its answer any time it is neeled; it has to provide an an-
swer or a solution in certain (often small) amourt of time, which is not known in advance Thus,
the dgorithm must have dways “an (approximate) answer at hand’, that may keep refining as
time passes, urtil the demand for it arrives. Some ways to creae any time (ant) algorithms from
nonant ones is presented. A colledion d ant algorithms is given. Severa manners to form new
ant algorithms out of old ores are exposed. It is aso shown a aedive way to use the idle time

(the time the ant algorithm is doing nothing, waiting to be cdled) to improve the values that are
required in ahurry.

Key words: Any time dgorithm; approximate computation, gredictor, preliminary results, suc-
cessve gproximation.

Centro de Investigad6n en Computad6n cel |PN

Famili es of “any time’ algorithms and methods to compose them

1. INTRODUCTION AND OBJECTIVES

Normal algorithms provide their answer or solution when it is ready, and the time taken to com-
pute it isnot known or it isirrelevant.

Red time dgorithms must provide their answer within a time interval, which is known at the be-
ginning of exeaution. These dgorithms have known constraints on the time they can use to
compute their answer.

Incremental algorithms compute the answer using as basis the previous result(s). Thereis no con
straint on hav much time they take.

Iterative dgorithms compute the answer repeding the same procedure over the successve values
of the candidate answer, urtil some aiteria on convergence or number of loops is met. They
belong to the incremental algorithms. Thereis no constraint on hav much time they take.

Any time (ant) algorithms must provide an answer “on demand’, bu how much time they have to
compute it, is nat known in advance Sometimes the answer is required (and must be pro-
vided) very soon after starting; in ather exeautions, the same dgorithm may have more time
before the answer is required. Thus, they are designed to have an answer aways realy, bu
they use the available time for improving it. A chapter of the book [Guzméan 94 provides
pradicd waysto producethese dgorithms.

Example: a program to play chess where aseach is dore up to a cetain level, and a result
(play) is obtained. If there is more time, it looks at a deeper level, and oliains a better result.
And so on, util it runsout of time.

Example: astime passes, agiven agorithm hasthevalues 3., 3.1, 3.14, 3.14, 3.1416, 3.14159,

... asitsanswer. Which oreis given depends onthe time of the request.
Example: an eledion prediction algorithm has, as time passes, the answers Céardenas, Carde-
nas, Labastida, Labastida, Fox, Labastida, Fox, Fox, Fox, ...
Example: a norma decompressng algorithm produces an image only when it finishes. A
flexible decompressng agorithm produces quickly a (poa) image, which then becomes
sharper astime passs.
Ant algorithms or computation are dso knavn as “approximation” algorithms, or converging
computations. They are useful because they provide an answer no matter how littl e or much
time there isto oltain it. We can think of an ant algorithm as containing several ways (other
algorithms, perhaps non ant) to predict the true value, exeauted in arder of acairacy (close-
nessto the true value; seedefinitionin 81.3.

Flexible dgorithms (flexible mmputation) are a generdization d ant agorithms (which orly
have time restrictions); here, restrictions can be on space bandwidth or other resource

1.1 Objedive

Our objediveisto exploit and hande at algorithms. Thus, 82 pesents families of ant algo-
rithms, and ways to oltain them out of normal agorithms. Also, 82.5constructs new ant ago-

rithms out of old ones. 83 propcses a aedive way to use the idle time to improve things, so that
the computation o future values becomes faster. Finally, some thought is given to their parall eli-
zation (83.2).

We wnsider an algorithm with severa inpus u, v, w, X, ... and ore output y. Since 83.4tells
us how to handle non numeric values (for the purpases of this paper) as if they were numeric, we
can asume that al these values are numeric. We can think that thereisa cdl y where the value 'y
is deposited several times, and real (by a an exogenous consumer) only once SeeFigure 1. Com-
pare with single assgnment languaggs, where eab variable is written orly once, and read many
times. It is convenient to assgn a semaphareto this cdl, with valuesvirgin (noy vaue yet; cdl is
empty), in use (cdl has avalid value), read (cdl has been read, nosense to kegp improving the
answer), and finished (algorithm has finished, nofurther acarracy [Cf. 81.3 can be sought). The
semaphare takes these values in the sequencev, i, r or v, i, f.

CONSUMER

ANT ALGORITHM. After m of y. After

starting, it produces ®veral, triggering the
successully better, resultsin \ / ANT ago-

Y- Cal y. It iswritten [3-Read | rithm, it takes
i the an unknavn
2. Produce™ Severaltimesand | o . "

several an- | rea orly once from y timetorealy.

Swers

FIGURE 1. The consumer (1) startsthe ANT algorithm, which then (2) produces sveral
answersin cdl y. Asynchronously, (3) the consumer reads cel y whenever it wishes, ob-
taining the best result obtained thus far.

1.2 Research areasfor ant algorithms

Some ae: a) how to provide best results with least resources (time); b) how to make gradual,
instead of sharp, improvements of the result (idedly, a continuows improvement is ught); c)
how to produce ant agorithms out of ordinary ones; d) how to mix ant algorithms; €) what to do
whil e the dgorithm is not computing, so as to improve its acaracy for next time; f) more generad
tradeoffs with flexible dgorithms; g) how to perall €li ze them. This paper addresses (a, c-€).

1.3 More definitions

Algorithm. A forma procedure, a @mmputer program, to perform something, such as a omputa-
tion; to oltain some output values, to make some cdculation, ou of inpu values, ou of
measurements.

Exaa algorithm. An algorithm whose output is “corred” (i. e., nd an approximation, nd an esti-
mation).

Approximate dgorithm, approximating algorithm. Algorithm A approximates algorithm E, if E is
exad, and B gives avalue nea that of E. Compare with ant algorithm.

A chain ant algorithm is an ant algorithm that can be represented as a sequence of successvely
more acarate gproximation (nonant) algorithms to compute value y (Cf. §1.1), the last one
in the dhain being the exaad cdculation. |. e, A(u, v,w, X, .) = {Al, A2, A3, ...Xu, v,w, X,
..). Each Ai is an element of the chain, and produwces a value for y, of increasing acairagy. In
general, the Ai’sare nat ant algorithms. Example: J1 of §2.2.

Some definition d scdar quantities follow for Ai, an element of a dhain. Since these quantities

vary from one computation (one exeaution d Ai) to the next, we shoud consider their average

value over many computations.

The accuracy of Ai is Nj2/Nt, anumber between 0and 1,where Nj; is the number of corred bits
(when compared with N+, the number of bits’ of the mrred answer) that the initia value of y
(theinput to Ai) has,? and Ni, is the number of corred bits that the final value of y produced
by Ai has. Ai hasincreased the @rred bits of y from Ni; to Ni,.

Theincreasein accuracy of Ai is(Ni2 —Nij1)/Nr.

The addtiond number of corred bits computed in Ai is Nj2 — Ni.

The rank obtained by Ai is the position d the least significant bit that Ai obtains corredly. Bits
are oouned from the most significant to the least; the munt starts at 1. Example: If A3 pro-
duces values of y that are @rred up to seven hits, the rank of A3 is 7, and we sometimes
write it as asubindex, thus: A3;.

The compute time of Ai isthetimet it takes to exeaute, if it ran in a single dedicaed processor.
Sometimes write it as a superindex, thus: Ai',

The efficiency of Ai is the ratio increase in number of addtiond corred bits obtained/compute

fi me, or (Niz — Nil)/ti.
An element that augments in threethe number of corred bits of y in 0.1secnd fes an effi-
ciency of 30 hits/sec ore that augments these bits in 1 second has an efficiency of 3 hits/sec
But: final (less $gnificant) corred bits are usually slower to oltain than coarse (more signifi-
cant) bits. This may be taken into acourt in a more daborate definition d efficiency, which
we shall not develop.

Idle time. The interval elapsed from the time an ant algorithm has delivered its value (y has been
read) until the next time the dgorithm is darted.

An element of a dhain ant algorithm is independent when it does not use values produced by some
previous element (asinitial value, for instance). Example: J1 of §82.2.Otherwise, the dement
is dependent.

To ant an algorithm E is to make an any time dgorithm out of it. Making an ant algorithm out of
anonant one, or antingit, is sownin 82.2.

X is better thanY, where X and Y are ant algorithms that ant the same function E if, given that
both exeaute for the same anount of time At, then, for all At, X produces better results (with
better or equal acaracy) than'Y.

If dgorithms X and Y do nd ant the same function E, the cmomparisonis meaningless

! We assume fixed point format, in two’s complement form. That is, the sign counts as one bit, is the most sig-
nificant bit, and it is bit number 1. Other formats can be used, with simple variations in these definitions.

% If the initial value is a random value, we can say that N;;=0. If the initial value is some previously computed value
of y, we know already the value of Nj;.

2. GENERATING ANT ALGORITHMS

2.1 Aninitial family of algorithms approximating an exact algorithm E

Given an exad agorithmy = E (u, v,w, X, ..), which wethinkis dow, we would like to pro-
duce other (non ant) algorithms yielding results close to y, bu faster. That is, we ae willi ng to
produce fast approximating dgorithms to E. These ae some, in increasing order of exeaution
time and d average accuracy:

A. Return last value. The fastest algorithm: return the prevous (last) vaue. It remembers the
last value it produced, which is kept in cdl y and can be rea at any time. A takes no time to
compute its answer, “it aready knowsit.”

B. Memoing. Have a cabe of tuples (y1, Wi, Vi, W1, X1); (Y2, Up, V2, W2, X2), ..[alarge table] and,
depending oninpu (u, v,w, X), produce asuitable value for y. Today’s main memories easily
store one milli on answers.

C. Interpolation. Linealy interpolate the value y for point (u, v, w, x) from values of y for
paints (y1, Ur, Vi, W1, X1); (Y2, U, V2, W2, X2), ... (Figure 2). It uses the table of (B).

y1=23 O O y2=-47

n o

o y
y4:8 -
O y3=0.15

FIGURE 2. Value of y is deduced from interpolating from values from y;,
Y2, Y3, ..

D. Non linear interpolation. Similar to C, but give more weight to pants closest to (u, v,w, X).
E. Compute the bona fide value. Exeaute E, that is, compute the @rred value. It is assumed

that thisisthe slowest of A through E.

Noticethat al of these A through E are “outside goproximations” to E, in the sense that they
are obtained without examining the insides (the wde, the inner works) of algorithm E, which is
regarded as a bladk box. More gproximating algorithms can be produced in 82.3 ly opening E
and applying A-D, and aher methodk, to its parts or subcomputations.

2.2 How to producean ant algorithm from a non-ant algorithm in black box form

Remember that an ant algorithm aways has its output y ready for consumption. Given an ex-
ad algorithm E, the most straightforward ant of E is
JL.y=A(u,v,w,X, ...
y=B (u, v,w, X, ..);
y=C(u, v,w, X, ..);

y=D (u, v,w, X, ..);
y=E(u, v,w,X, ...
end;

where A through E are the (non ant) algorithms of §2.1. Algorithm J1 says. have realy the
previous valuey iny; then, read the cate of B to store in y the gpropriate value; then, line-
arly interpolate (using C) from values in the cate; then, nonlinealy interpaate (using D)
from same values; then, compute the exad value. At some time during the exeaution o J1,
thevaluey will be read. After this, there is no sense to continue the exeaution o J1.
Noticethat we treded E as abladk box, and A, B, C, and D were obtained withou delving in
the form or code of E.

J2. Given a chain ant algorithm J1, ore can produce abetter chain ant algorithm J2 by deleting all
those dements (except one: the fastest) which have the same rank. Because it does not make
sense to exeaute two elements to oltain several values with the same rank; one of them will
do.

J3. Given a chain ant algorithm J2, ore can produce abetter chain ant algorithm J3 by sorting the
elements of J2 in ascending rank order. Because it does not make sense to spend some time to
produce an answer of rank r1, and then to spend an additional amourt of time to produce a
new answer with rank lessthan r1.

J4. When in a dhain ant algorithm where its elements are in ascending rank order (like J3), ore
element Ai is not faster than another element Ai+k somewhere to its right (i. e., with higher
rank), and noelement of higher rank than Ai is dependent on Ai, a better algorithm J4 is ob-
tained by deleting Ai from the dhain, since Ai+k is faster and more acarate than Ai.

Remark: after the &owve simplifications, the dements of the chain are in strictly ascending
rank (and in strictly ascending compute time, too, if there ae no elements on which ather ele-
ments depend). Next sedion delves more onimproving ant algorithms.

2.3 Anting an algorithm by combining antings of its subcomputations

Given that we want to ant anonant algorithm, we can get results better than 82.2, ly opening
the dgorithm to expose its parts or subcomputations, anting these and combining the results. This
sedion explains how.

Suppcse the exad algorithm E(u, v, w, x) has the following form:

E. a=f(u,v,w,Xx);

b=g(u, v,w, X);

¢ =h(u, v,w, x);

y=a+b+c

end;
then an ant of E can be:

J5.a = at of f;

b=antof g;

c=atof h;

y=a+b+c

end;

J5 is naot the best: it spends a good amourt of time computing ant of f, and it may not have
enough time to compute ant of g. The bell rings for J5; it needs to produce the value of y and it
just finished computing (very acarately) ant of f. The solution to this problem, given below, isto
observe the rank of the successve values (of y) produced.

2.3.1 General procedure to obtain the best ant of E

Let us say we ae looking for M = best ant of E, where M is of the form {m1, m2, ...}. How
many mi’s? Of what rank ead? What shoud they contain?

A. Dedde how many elements the resulting chain {mi} shoud have. Let us assume that the ac-
curate y hasrank 12,so that it is reasonable to produce four elements m1, m2, m3 and m4, to
render y'sof rank 4, 8, 10and 12 respedively. We need ant of f, ant of g and ant of h to have
chains of four elements, too. But, of what rank ead?

B. How are the partia results a, b and ¢ combined (let us cdl this the combination pat) in E?
Well, they are just added: y = atb+c (we will trea below other ways to combine partial re-
sults). We natice that rank y = max (rank of a, rank of b, rank o c). Thus, it makes snse to
spend just enough time in eat o the chainsfi, gi and h to oltain the samerank in ead. The
solutionis: find four elements for ead o chains {fi}, { gi}, {hi}, withranks 4, 8, 10and 12,
respedively.

C. Do the anting f, g and h,then apply the simplificaions of 82.2,in order to oltain the three
chains of step B.

D. Thesolutionis: M= {ml; m2; m3; m4} where mi = (a=fi; b=gi; c=hi; y=atb+c), and the rank
of mi =rank o fi =rank of gi =rank of hi =4, 8, 10and 12,respedively.

What if the combining part does nat trea the partial results equall y? Suppcse the combination
part were y= a +bxc. Sincethe product yields arank which is the sum of the ranks of the fadors,
we ned in thefirst iterationto have f1 o rank 4, bu gl and h1l reed to yield an answer of rank 2
only. In this manner, the goproximate answer y of ml, the first element, will be of rank 4.For the
seond element, m2, we have: m2g = (ag=f2g; bs=024; c4,=h2y; ys=ag+bsxc,) where we have used
subindicesto indicae the ranks.

Similarly, if the combining expresson werey = a +sgrt(b) + ¢, the seand element would be
m2g = (8s=f2s; b16=0216, Cs=2g; yg = & + Srts (b1e) + Cs), SiNcethe rank of sort is half the rank of
its input. Similar results can be obtained for other functions. In generd, if y is a complicaed
function d its previous parts a, b and ¢, then you read to understand hav the rank of y depends
ontheranks of f, g and h.Moreover: you do n¢ need to compute this compli cated function aca-
rately at ead element; you can ant it, too: see82.3.1.2.

2.3.1.1 If each part can be expressd asa continuousapproximation

Sometimes, the ant of ead subcomputation o an algorithm can be expressd as a successve
refinement of the form of §82.3.2.In ou example of §82.3,suppcse ant f can be expressed asiterate
(fk), and similarly for ant g = iterate (gk), and ant h = iterate (hk), where fk, gk and hkare some
expressons that through iteration get the answers. It istempting to say:
ant E = iterate (y = fk + gk, + hk); this will not work because we do nd know when to quit. Let

ustry:
antE = y' =Yy0; [* someinitial valuefory */

do{ y=y;
y' =fk + gk + hk }
until |[y—y' |<eg

Thisis dill not right since eab iteration produces, in general, different advances in the ranks
of fk, gk and hk.In ather words, gk may need threeiterations to add ore more “good’ hit to its
result, while gk needs ten iterations. The expressony’ = fk + gk + hk mixes ranks, so that y gets
only the small er of the threeranks of fk, gk and hk.The solutionisto have eath mi of the answer
possessthe form
mi; = (g= iteratg (fk);

b= iterate (gk);

¢=iterate (hK);

Yi=g+h+G)
where the subindices indicate rank, and iteratg means: iterate until rank j is obtained. For m1,
j=4; for m2, j=8; for m3, j=10, whereas for m4, j=12.

2.3.1.2 If the @mbining partisadow fundion that needsto beanted, too

What if the combinationis of the form y=k(a, b,), wherek isa mmplex (slow) computation,
instead of the smple and fast y=a+b+c? It is desirable to ant k, too. For M = best ant of E of
§2.3.1,ant k will have four elements, of ranks 4, 8, 10and 12 ant k= {k1 4, k2, k310, kd12}. Then,
k14= (y4=ka(a, b, C)), where k, means. compute k with rank 4. By anayzing the form of k, it can
be deduced what are the right ranks of a, b and c that will yield avalue of k with rank 4. And the
same for k2g, k310 and k4. Thiswill givetheright ranksfor {fi}, { gi} and {hi}.

2.3.1.3 Whenthevaueisacompastion of funcdionsy =f(g(h(u, v,w, X, .)))

Here, there is a need to knav how the rank of h depends on the ranks of u, v, w and x. And
how the rank of g depends on the rank of h. And hav the rank of f depends onthe rank of g. An
example ill ustrates the procedure. If E = sgrt (v + sin (u —tan (wx))), ou goal is to oltain (fol-
lowing our example of §2.3.] ant E = {m14, m2g, m3;0, m4;,} where the subindices indicae the
desired ranks. For instance, the solutionfor m2 is
M2s = (8go= tanzo (WeeXXeo);

b16= SiN16 (U — 0);
Ys= SQrtg (Ve + bye)).

The derivation d the ranks darts at the end, iny, and proceals towards the beginning, at a. y
needs to berank 8,sincem2 hasrank 8. This meansthat b hasto have range 16. Thisforces snto
be sinys, which means: iterate or approximate the value of sine until itsrank is 16. That requires
the rank of ato be 20 (the rank of sinis a bit lower than the rank of its inpu). This forces tan to
bemme tan,,, which means: iterate or approximate the tangent urtil its rank is 20. It is assumed
(c0) that theinpus u, v, X, w have large enough ranks.

2.3.2 Anting an exact algorithm which is already a successve refinement to-
wards the exact answer

In many cases, an exad algorithm E isalready in ant form. This happens when it is formed by
aloop a iteration that kegps improving the value of y. Generally, E takes the form

Y =VYo; [* initial valueof y */

do { y=Vy;

y =f(u, v,w, Xx,y) } [* thisf iscdled thekernel of E */

until [y—-y' |<e
Inthiscase, ant of E=E.
Nevertheless §2.3.1wants the dgorithm to be broken into four elements, ead ore of given rank
(ranks ought in 82.3.1were 4, 8, 10and 12. Four suitable values (g1, €2, €3,e4) of € to oltain
thoseranks $houd be seleded. The solutionis:
E(u, v,w, x) ={y'=y0o; El4; E2g; E310; E415} where Ei = do {y=y’; y'=f(u, v,w, X, y)}

until |y -y’ | <ei

where eab €i keeps the iteration going until the desired rank for y is obtained. Thus, €1 is the
corred value nealed to keep the iteration d E1 going until the rank of y is 4, €2 is the @rred
value needed to keep theiteration d E1 going until therank of y is 8, and so on.

With some variation, it is useful to apply this anting to algorithms that, from a quad tree re-
construct agiven image.

2.3.3 Anting algorithms with conditionals

To oltain M = best ant of E, where E isthe exad algorithm
E={f; if p(u, v,w, x, .) then g(..) elseh(..) endif},
we proceeal as in §2.3.1,ignoring the predicate p(..), so that we obtain four chains, eat o the
form
mi = (fi; if p(..) then gi else hi end-if),
of ranks 4, 8, 10and 12,respedively. That is: do nd ant the predicate p, bu keep it exad. Predi-
caes have only one bit acaracy (they aretrue or false), so they can na be anted.

Figure 3 shows the result M = ant of E, where eab Ei = if f(u, v, w, X) then gi(..) else hi(..)
end-if, and we have three éementsin M.

Y

O é
J1 hy
"¢
M= Ant of E = + +
g2 h,
FIGURE 3. Anting an algorithm
that contains a ondtional. Notice
wedo nd usefl,f2andf3in M, + +
but just f.
(OF] hs

W

2.3.4 Other cases of variabley

Some other cases and conditions of variabley are analyzed.

A.yisavauekept inareoord in disk. For instance y is the paosition an enemy submarine has. A
data base with ead submarine’ s position is kept in disk. Each day, atransadion file, with the
transadions of the day (submarine movements) is obtained. At night, the E algorithm upcetes
the disk data base with the daily transadionfile. It is clea that the new value of y is a func-
tion d the value of y in the data base, plus the transadion in the transadion file. Probably E
processes ead y value sequentially. What does it mean to ant E? That we want to have anew
E that delivers at any time the pasition d a submarine number s. y=E(s). Here, we do nd have
a good manner to approximate the (old) value of y lying on dsk, except to memo it (§2.1B).
Thus, it makes ®nse to have alarge table in randam memory of part of the records in the data
base, so that updeting y will be much faster. Copying these values to disk and retrieving new
ones could be dore & time permits. The table shoud contain the most frequently asked sub-
marines, perhaps. This lution is well known as virtual memory (to pretend that the whole
data base isin memory, when orly some part is) or cading, or memoing.

B. y isagloba value that depends on many values on dsk and onthe transadions file. Let us
give y the new meaning y=(Xc, Ye, Zc) is the center of mass of the submarines. the position o
the center of the submarine fled. A new algorithm F now computesy at the end d the day by
updating the data base with the transadions file, and then computing the center of mass To
ant F, you reed to compute y “onthe fly”, as records are read and written. This ant of F reads
every record of the data base, and updites sme. Eadh record processed aff eds the value of v,

so that it slowly moves towards the “true” or “exad” center of mass Thisis dow if the data
baseislarge.
A better algorithm (which is exad, bu you can ant it): keg the submarine fil e together (not
fragmented), and dorit read the submarines by their submarine number or key s, but sequen-
tially as they appea onthefile. Previous to processng it, read into memory (sequentialy, na
using s as key) the mmplete transadion file (it pays to have it not fragmented, too). Y ou will
be repladng 10,000randam accessledures (or whatever is the number of submarines, to be
cdled S), ead taking 10 milliseconds (total=100 seconds), by 10,000 sequential ledures,
ead taking 0.1 milli seconds (total=1 sec), since the records are together in the disk track, so
the Winchester head daes not need to be jumping all over the disk (ead jump takes on aver-
age the seektime, typicdly 10 ms).
A better ant of E is produced by keeping together with yesterday’ s value of y, some alditional
information, ramely, the number of submarines (or the total mass if they are not equally mas-
sive). While mnstructing the transadionfile, likewise, ke tradk of the dhange of the center
of massof the submarines moving today; of course, this changeis (0, 0, Q at the beginning of
the day. With this,

y = [Sxold y + today’ s change of the center of masg/S.
Moreover, you can iterate and dothe @owve aldition incrementaly, as on as submarine
movements are deteded:

y = yesterday’sy; [* S = total number of submarines */
whenever (submarine s changes position)
do {y=[Sxy + the dhangein pasition d g|/S;

write the change in pasition d sto transadionfile}

and in this case you do no even neal to compute and keep the “change of the center of
massof the submarines moving today”. This resembles incremental data mining dgorithms,
which avoid recomputing from a large anourt of old data [Guzman 97, by keeping addi-
tional information (abou that old data) to permit divison d the cdculation in two functions
o(old) and nnew), so that the desired valuey is y=h(o, n), and the value of o(old) is kept, to
avoid recomputing it as new values appea. In ou example, o(old)= Sxold y; n(hew)=change
in pasition d s; and Ho, n) = [o+n]/S. In fad, these dgorithms are very good to parall €li ze;
witness our example: suppcse you have three omputers, ore in Europe, ore in Asia, and
other in USA, where the thange of position d submarines in thaose regions of the world is
computed. Then, the kernel of the ébowveiterationis

y = [Sxy + the dhange in Europe +the dhangein Asia +the changein US]/S.
Since the new function o(new) can be parallelized (in 3 madines, in our example), the value
of y isobtained faster.

2.4 Useof the semaphore of they cdl

The interval (r, v) or (f, v) where the semaphare (81) goes from being read (r) or have fin-
ished (f) to the beginning (v) of the next exeaution d the ant algorithm, signals theidle time. This
idletime will be exploited in useful waysin 83.1.

10

2.5 Combining several chain ant algorithmsinto newer ones

Asaume we want to merge several chain ant algorithms, into a new chain ant algorithm that
makes use of the elements of the merged chains in the most convenient way. An example will
show the procedure. Let us sy we want to form a new chain ant agorithm C by adequately
merging A = {AL% A25”% A3,0'%% A4, B = {BL?% B2s: B3¢ B41,°% and C = {CL%;
C2g% C310%; C41,'%, where the exporents are the exeaute times (the notation 96 explains
nat only that the exeaute time of A2 is 3, bu that it is a dependent element), and the subindices
indicae rank. SeeFigure 4.

1612
t A 129~

s | FIGURE 4. How to form a better chain ant
- ' algorithm M from three dain ant algo-

4 82210 / égrank rithms A, B and C.
t oo For the first element of M, we seethat,
B g /| from A15, B12, C1, the fastest is C1%, o
2 /-"{/ ,/' C1 is chosen. For M2 we sded the fastest
I L S | > from A2%°, B2°, C2°% thus, M2 = A2. For
4 8 10 12rank M3 we sdled A3 from A3'%°, B3?, C3'*.

For the last element of M, we selead C4
from A4'%12 B4%® C4'%1 thus, M4 = C4.

The new agorithm M is formed of 4
chains. M = {C1; A2; A3; C4}. The ranks
are 4, 8, 10and 12.The compute times are
1,41, 774and 97, a 1, 4, 3and 2.

c
9-

P
-
-
-
-
-
-
~

4 8 iO 712rank

I t 149 --7"[16-14

L
4 8 10 12rank

Cl A2 A3 C4

Theideaisto seled, for eat rank, the dosest element of the given chains. Notice how the d-
gorithm works with dependent and with independent elements. In fad, A2 takesitsinpu value, a
y of rank 4, nd from A1, its usual feeder, bu from C1, which also produces ay of rank 4,too (we
seleded C1 because it was faster than A1l).

Note: make sure that ead chain uses different sets of names of variables; otherwise, aliasing
and wrong results will result.

11

2.5.1 When merging isno god

Try this example: you have dhains{Ai} i =1, m and {Bj} j=1,n; { Ai} producing vaues with
ranks 1, 3, 5, 7, ..and Bi values with even ranks. Each element takes 10 seconds to compuite.

The dhain Ai produces avalue of rank 7in 40seconds, while the merged chain A1 B1 A2 B2
A3 B3 A4 B4 A5B5 A6 B6 A7 (which will be produced by 82.3.1,and we thought it will be the
best) in 130semnds. The alvantage of the merged chain is that it produces more intermediate
values of y, bu it is much slower than either { Ai} or {Bi}. A better solution will be to modify
slightly one of the dhains (and dscard the other), so that at al times (and nd only every other
rank) they value is avail able. See83.3for how to dothis.

3. PARALLEL ANT ALGORITHMS

With the introduction d parallel procesors, ant algorithms get even further attention and in-
terest. We discussin this ®dion (a) the use of idle time, and (b) an initia approach to parall €li-
zation. We dready exposed in 82.3.4the parall i zation d incremental data mining algorithms.

3.1 Usingtheidletimetoimproveitsaccuracy next time

The time an ant algorithm is doing nothing can be used to improve its acaracy nex time the
algorithm is cdled. It is“to computer for the future.”

| shall use the following simile: A thunder signals “it will rain soor’, and triggers the “pre-
pare for rain” ant algorithm. Quickly, | cover with plastic sheds the most valuable merchandise
laying in the open badckyard. If rain has not started, | cover other less valuable merchandise. If
thereis gill time, | take into the house some merchandise, sequentialy. At some time, rain starts.
The “prepare for rain” algorithm stops. This is how an ant merchant works. But now, from the
moment the rain starts until the thunder signd of next rain is heard, is the time to exeaute the
procedure “prepare for next rain.” This procedure may or may not be ant. | may makeroom in the
house, so that no merchandise needs to lay in the patio. | may pil e the merchandise in some man-
ner that will fadlit ate its covering. | may move the merchandise doser to the doar, so that it will
take lesstime to move it inside. All of these make ather faster or more acarate exeaution d the
“prepare for rain” ant algorithm nex time. In fad, if we follow this line of reasoning, we will be
inventing the prepared agorithms, which prepare themselves for next exeaution, a which pre-
compute the answers to the expeded questions. They are very useful becaise they store computer
time; that is, they convert idle or wasted computer time into useful results.

Question: How can it use the idle time of an ant algorithm? Some answers:
(@) To compute more values of the function, to have ready for a future use. Perhaps sonthe in-
put (34, 0, 47, 2will be given; let’s compute its answer and memoize it (82.1B).
Thisis useful for filli ng the cade of §2.1B, whichisalso usedin 8§2.1C and 8§2.1D.
(b) To measure the accuracy of eat element of the dhain. To measureitsrank.
(c) To ascertain the compute timet; taken by ead element A; of an approximate dgorithm.
The computation d abowve quantities is important, since most of the procedures in this paper
rely on knawving these quantiti es.

12

3.2 Parallelizing an ant algorithm

If an ant algorithm can use severa processors, a simple way to paral€elize it is to assgn eah
element of the dhain of the dgorithm to a processor. Thiswill not be optimal, since éement 1 will
finish soon,and processor 1 will beidle most of the time. SeeFigure 5.

vy v

A ={A1,A2,A3} mralel of A= A1 ,| A2| ,|A3| }
\V

FIGURE 5. A (non ogimal) way to parall elize ant algorithm A.

In general, to make best use of the procesors avail able, you haveto dvide each element Ai
into the processors. That is, the three processors nead to be busy computing A1. Then, the three
processors need al go to computer different parts of A2, and so on.For instance, for algorithm J5
of §2.3,

J5.a=at of f;

b=antof g;

c=atof h;

y=a+b+c

end;

asolution ketter than Figure 5 isto give aprocessor to compute g ancther for b, ancther for c.
Seefigure 6.

v v v
a=antof f a=antof g a=antof h
! D 3
=a+b+c
2 y

FIGURE 6. A goodwat to parall elize dgorithm
J5 of 82.3.The bladk number indicates the proc-
esr assgned to ead computation.

To parallelize dgorithm M of §2.3.1,
M={ml; m2; m3; m4} where eab miis

mi = (a=fi; b=gi; c=hi; y=atb+c),

give to processor 1 the computation o f1, f2, f3, ..; to procesor 2 give g1, g2, ..; and to
procesor 3 give hl, h2, ..Asinfigure 6, procesor 2 coud hande the mmputation d y. Proces-
sor 2 hasto take cae to synchronize (wait for processors 1 and 3,if nealed) so as not to add val-

13

ues with dfferent ranks. By introducing a fourth processor, which orly computes y = a+b+c, the

load is distributed as foll ows:

PROCESSOR 1: compute ant of f, without interruption, going from low to high ranks, and have a
as an external referencevariable (83.3), so that processor 4 can consumeit at any time.

PROCESSOR 2. Samefor ant of g.

PROCESSOR 3. Same for ant of h.

PROCESSOR 4. Do dl thetimey = a +b + ¢. Some values of y will come from adding values
(of a, b,and c) with dfferent ranks.

3.3 Making y an external reference

In generdl, it is more desirable to have ait algorithms with dependent elements (such as those
in 82.3.2 than independent elements (like those in 82.2, because the independent elements of
higher rank “also go through lower ranks’, so that, in some sense, lower rank values get com-
puted several times, bu they are not “brought to the surface” (that is, they are not stored into y).
Exception to this rule: when the independent elements are fast.

For this reason, in generdl, it is preferable to expose the y value, in an iteration such as
82.3.1.1)in order to have it available dl the time. This avoids independent elements. This avoids
the problem of 82.5.1,where one dhain produced ony values with even ranks, and the other, ony
with oddranks. A way to dothisisto dedarey (i. e, cdl y) to be a externa reference or a
shared variable, or a global variable, or a dmmon variable (depending on the language), so that
any body can rea it a any time (warning: have y tell you when it has been real, so that you
shoud stop computing y and start using the avail able idletime, as 83.1 dctates).

3.4 How to handle non numeric values asif they were numeric

In many cases, algorithms yielding non-numeric values can be anted, too, if the values can be
arranged in a tree For algorithms that work on image decompressng, big squares (low resolu-
tion) can be reconstructed first, albeit with na so much acarracy. Later, smaller parts will be re-
solved. For algorithms that work on quad trees, first process the big squares, then the midde
squares, etc. An example will ill ustrate how to map the labels (non numeric values) into integers,
so that the rank of the value can be obtained, and this paper can apply to these values.. Let us sy
you have an algorithm that locates sme submarine or somebody very predsely in the world. You
want to arrange into a tree the non-numeric values that describe geographic places, as foll ows.
First, your algorithm seleds the country. Being 150 courtries in the world, reserve the first 8 hits
(of the integer tag we ae seeking) for them. Then, the country with more states (or provinces) is
U.S.A., with 50. Reserve the next (less sgnificant) 6 hits of y for them. Now, reserve 9 hits for
the up to 512municipaliti es that can exist in a state (Oaxacahas 400). Reserve the next 7 hits for
upto 128citiesthat can exist in agiven municipality. And so on.

Then, to construct atag for ead locaion in the world, first assgn the most significant 8 hits:
arrange the 150 courtries aphabeticdly (or by some other ordering criteria), give the number 1 to
Abysinia, the number 2 to Afganisthan, ... Then, asggn the following 6 hits, by ordering the states
of ead courtry (starting with courtry 1=Abysinia) and give them the numbers 1, 2, ... upto 64
(courtries have lessthan 64 states). Do the same for the following 9 hits, to be assgned to the

14

municipalities. And so on. The resulting tags will be 8+6+9+7=30 hts long. This gives you a
mapping from words or geographic concepts to integer tags, where “rank” has a definition that
works as if it were the definition d §1.3.

Thus, the normal course of the dgorithm “go from the arse to the fine” can be translated
into “go from low to higher ranks”.

Warning: do not add a otherwise numericdly manipulate these integer tags. They are not
integers, they are just tags. But: the rank of these valuesis an integer.

3.5 Conclusions and comments

» Givenanormal algorithm considered as a bladk bax, use of memoing or cading (82.1B) and
other tedhniques allows us to provide fast but approximate answers to its result, thus making
it an any time (ant) algorithm.

» By defining rank and aher measures, several manners are introduced for forming ant algo-
rithms out of nonant or normal algorithms.

* Also, the paper introduces ways to mix several ant algorithmsinto new ones.

e A manner to usetheidletime to compute rank, acairacy, €tc., isgiven (83.1).

* Finaly, the paper gives osme alvice & how to parall elize ant algorithms.

3.5.1 Recommendations for further work

* Write a ompiler to ant algorithms when there is no accessto its code, along the lines of §2.2.
That is, given E, it generates the ants of E J1 through J4 of §2.2.

* Write a ompiler to ant algorithms when there is accessto its code, along the lines of §2.3.
That is, given E, it generates ant of E.

* Invent the prepared algorithms of 83.1 you would have invented a way to store computer
time, that is, to use today’ s time for tomorr ow’ s computations.

» Write a ompiler that, given an ant algorithm A, generates code that computes the useful val-
ues (a) to (c) of 83.1, duing the idle time of A —so0 you do nd have to write this code (a)
through (c) manually.

» Proced further in the paral elization d ant algorithms (83.2).

* Continue work onanting algorithms with non nunericd values (83.4).

3.6 Acknowledgments

To Eduardo Moraes and Enrique Slcar [SUcar 94], who introduced me to new materia in the
area

These ideas came to mind (although they are nat redly abou agents) as a result of working
for projed xxxxx “Interadion d purposeful agents that use diff erent ontologies’ [Guzman 200Q
sporsored by Conacyt.

Part of thiswork was produced under COTEPABE (IPN) sponsorship.

15

3.7 References

Guzméan, A. Témicas Modernas de Programacion. (1994 Book in Spanish, 300 @ages. © 1994
SoftwarePro International; printed by Centro Nadonal de Céaculo (IPN); limited edition.

Guzmén A. Estado cal Artey de la Pradica en Mineria de Datos, Andlisis y Critica (1997 Me-
morias del Il Taller Iberoamericano e Reanacimiento de Patrones, 367376. La Habana,
Cuba. Marzo 24-28.

Addfo Guzman, Jesls Olivares, Aracdi Demetrio and Carmen Dominguez, Interadion d pur-
poseful agents that use different ontologies. (2000 Ledure Notes in Artificial Intelligence
1793,MICAI 200Q Advancesin A. |. Osvaldo Cairo, Enrique Sucar, Francisco J. Cantu (eds).
Springer Verlag. Pages 557-573. Also: CIC Tedhnicd Report 46, Blue Series, January 2000.
ISBN 970-18-41328

Enrique Slca. Lareferenciafalta.

16

